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Abstract. The problem of a random walk on  an  ultrametric space which is characterised 
by random branching and  non-degenerate sites is considered. Results are  compared with 
more restrictive solutions. 

1. Introduction 

A number of recent papers have discussed stochastic dynamics on ultrametric spaces 
[l-71. In  these systems a particle hops from site to site by thermal activation over a 
hierarchy of barriers. Depending on the scaling of the barriers, the autocorrelation 
function displays a range of non-exponential behaviour including a temperature- 
dependent power-law decay. The qualitative nature of these systems (large number 
of free energy minima, many different timescales) and the nature of these results (slow 
relaxation) suggest the usefulness of ultrametric models for understanding disordered 
systems. This is discussed, for example, by Blumen er a1 [4], who consider the use of 
ultrametric diffusion to model transport in random media. Earlier papers [ 1,2]  restric- 
ted their consideration to degenerate sites in highly regular spaces, but a degree of 
randomness in the branching as well as in the free energies of the sites would clearly 
be appropriate. Later papers [3-61 deal with the more general case in which branching 
may differ from level to level. Kumar and Shenoy [5] consider the introduction of 
randomness in the branchings within the levels and suggest that such randomness has 
little effect on the form of the autocorrelation function for diffusion through such 
systems. Bachas and Huberman [7] obtain a solution for arbitrary branching and are 
able to average it in closed form over independent distributions for the branching in 
the limit of many-levelled spaces with linearly increasing barriers. They indicate that 
the exponent in the power-law decay of the autocorrelation function that arises in this 
case is unchanged by the introduction of the randomness. The present paper extends 
these results by solving quite generally the case of ultrametric spaces with independent 
random branching and by giving detailed consideration to the effect of non-degenerate 
sites. In the case of random branching the solution permits direct numerical evaluation 
of the exact average autocorrelation for finite-size spaces. In  P 2 the general solution 
for arbitrarily branched spaces is presented. Averaging over distributions of the 
branching is performed in P 3. Up to this point the sites are taken to have equal 
thermodynamic weight. This restriction is removed in P 4. Finally, results are compared 
to those that pertain to uniform branching and degenerate sites. With respect to 
randomness in the branching and to non-degeneracy of the sites, the qualitative features 
of the autocorrelation are found to be robust. 
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2. Solution for arbitrary branching 

We consider a space of sites that has the following structure. At the first level of 
branching, the sites are partitioned into clusters. An ultrametric distance is defined so 
that any two sites belonging to different clusters are separated by a distance of n. 
These clusters will be said to be of order ( n  - 1)  and are then in turn partitioned into 
subclusters of order ( n  - 2) and so on down to clusters of order 0, i.e. single sites. 

The dynamics are described by a stochastic process 

d x l d t  = W .  x( t )  ( 1 )  

where x,( t )  is the probability of finding the system at site i at time t .  For any specific 
tree, the transition matrix W is given by 

g(i, j )  = k, k # 0 
i = j .  

Here g(i, j )  is the ultrametric distance between sites i and j .  The off-diagonal entries 
ck are the hopping rates for hops of distance k. The diagonal entries d, are determined 
by the condition that probability be conserved, 

w(,=o. 

Hence 

(3) 

Here ni ,  is the number of sites at distance r from site i. The autocorrelation function 
is then x(0) - x ( t ) ,  and may be found by expanding x in eigenvectors of W. These 
eigenvectors are readily found by making the appropriate ansatze. Let d,, be a cluster 
of m,, sites. Further, let dF be partitioned into a,, subclusters, d,,". An appropriate 
trial vector corresponding to d,, is 

Corresponding to each d,, of order 2 1 we find an  (aF - 1)-dimensional eigenspace. 
With the inclusion of a one-dimensional eigenspace corresponding to the zero eigen- 
value, the decomposition of W is complete. 

Rather than describe the individual eigenvectors it is convenient to introduce 
projection operators: 

i a d , ,  o r j & d F  
i E d,,, j = i ~: j ' " * '  = 1 - 1/m,  e -1lm,, i E d ' , , , j E d , , ,  i # j  

and 
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The P'.".' project out the eigenvectors corresponding to respective d,. With these in 
hand it is a simple matter to determine the eigenvalues: 

for i E ,?p, and d, of order j. (The second sum is taken to be 0 when j = n.) Finally, 

up  to a constant term equal to one over the number of sites. In the case where x(0) 
describes the definite occupation of a single given site, i.e. x,(O) = a,, the result may 
be simplified. Let site i be characterised by a sequence of numbers w0, wl, . . . , w, 
where each w, is the number of sites in the cluster of order r of which the initial site, 
i, is a member. Then, retaining a factor of wo = 1 for reasons which will become clear 
in § 4, 

x(0) * x( t )  = , = I  C " WO(&-$ ex,[-(w.,,+ ,=,tl i (w,-w,-I)E, )I f +- 1, (10) 

in agreement with Bachas and Huberman [7]. 

3. Average over randomly branched spaces 

Consider an ensemble of ultrametric spaces of order n with each a,, chosen indepen- 
dently according to some given distribution. Averaging is to be performed over initial 
sites, x, = a,,, chosen at random from this ensemble. The quantity of interest is 

where A , ( w )  is the autocorrelation summed over all initial sites in all spaces of n 
levels with w sites and P,(w) is the probability that a space of n levels has precisely 
w sites. Once again we drop the constant term. P,,(w) and A , ( w )  will be evaluated 
recursively in n. The calculation of P, , (w) in fact constitutes a famous problem that 
first arose in 1874, namely to determine the likelihood of a given family dying out in 
successive generations. The solution of this problem, as well as a brief history, is given 
by Harris [8]. Apparently, this solution has been rediscovered numerous times over 
the years (perhaps most recently by the author) and is recounted here as a clear 
illustration of the method used to solve for A,( w). We proceed to count the ( n  + 1)-level 
spaces by counting the number of ways in which each may be constructed by appending 
n-level spaces to one-level spaces (figure 1): 

P , + l ( W )  = P , ( l ) P n ( w ) + C C  pl(2)~,(~~I)~,(~~z)~.,,I t * : + .  . 
W I  n 2  
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+ . , .  

Figure 1. Diagram illustrating the method of counting branches 

This expression is more compactly expressed with the introduction of generating 
functions: 

E 

F , ( s ) =  2 P , ( w ) s ” .  
w =  I 

Multiplying both sides of (12) by s w  and summing over w yields 

In addition, relation (14) implies recursive relations among the moments of the P , ( w ) :  

and 

Equations (15) and (16) iterate toward a fixed point in which the width of the 
distribution grows in proportion to the mean, 

A recursion relation for A, may be derived in a similar manner. Let us build each 
( n  + 1)-level space of w sites out of n-level spaces having w I ,  w 2 ,  . . . sites. We sum 
the contributions to A,+, as before noting that each n-level space contributes 
A, exp[-(w, - W , + ~ ) E , , + ~ ~ ]  to A,+l and remembering to include the contribution from 
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the cluster of order ( n  + 1). 

P,+ I ( w)A,  + ( w ) exp( - n +  t )  

+;. sites (;-:)I + . . . .  

Once again considerable simplification results from the introduction of generating 
functions. Let 

Then (18) becomes 

Finally, to start the recursion, 
x 

A l ( s ) =  C P(i)(i-  1) exp(-e , t ) s '  
, = I  

It is apparent that (111, (20) and (21) constitute a solution that is amenable to direct 
numerical evaluation. Moreover, this formalism can treat spaces with different distribu- 
tions chosen for each level although such spaces will not be considered here. 

4. Non-degenerate sites 

In  considering states with different thermodynamic weights we observe with Paladin 
et al [2] that W,, must be replaced by W,,g, (for i Zj) where g ,  is the weight of site i 
and with Bachas and Huberman [7] that this weighting of sites may be achieved in 
effect by adding one more level to the ultrametric space with site i now represented 
as a cluster of g ,  microstates. The present paper extends these considerations: we 
proceed by taking the limit in which the hopping rate among microstates of a given 
site approaches infinity so that the occupation of a given site, i, will always be simply 
g ,  times the occupation of any of its microstates. Immediately after f = 0 equation (10) 
will be valid with wo at each site no longer equal to one but equal to g, at that site. 
We let P ' ( g )  be the distribution of thermodynamic weights of the sites. In order to 
preserve the average site to site transition rates we demand that (g) = 1 and permit 
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analytic continuation of the g, from integer to real values. The autocorrelation is 
derived as before with two complications. We must now start the recursion for p,(s) 
with 

and 

5. Discussion 

The solution for the case of uniform branching may be recovered either from equation 
(10) by letting wi = cy' or from equation (20) by letting F,(s) =so". When cy = 2 ,  for 
example, the solution of Ogielski and Stein [ 13 is recovered. In comparing solutions 
for the autocorrelation we see that the effect of introducing random branching is to 
replace single exponentials by distributions of exponentials: 

It may be argued that this difference is qualitatively unimportant. Consider the terms 
in the autocorrelation for spaces branching uniformly at a rate of cy per level: 

Initially, x, is smaller than x , - ~  but it decays more slowly. Let f ,  be the time at which 
x, becomes equal to x , - ~ .  Then 

corresponds to the timescale at which x, becomes important. (Note that analogous 
consideration may be given to the timescale at which x, ceases to be important.) Let 
us compare, at time f , , ,  x, to the corresponding term in the randomly branching case 
with ( w )  = cy. Each term in x, will be multiplied by a factor which is an average of 
exponentials with the mean exponent equal to zero. For a given term, say the ith in 
x,, the width of the distribution of exponents will be 

Considering first the case of linearly increasing barriers, i.e. E,, = exp(-an),  and noting 
equation (17), we see that the introduction of random branching multiplies the terms 
in the autocorrelation each by factors that are essentially identical at the times the 
given terms are most important. I t  is then to be expected that the only change in the 
autocorrelation will be a shift by a more or less constant factor. This result is borne 
out numerically (figure 2 ( a ) ) .  When the barriers increase faster than linearly, the 
distributions of exponents become narrower from term to term and the autocorrelation 
is expected to tend toward that of the uniformly branching result (figure 2(6)).  It 
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Figure 2.  Plots of autocorrelation against time for ten-level trees with various branching 
distributions with a mean of three. The full curve is for uniform branching, the broken 
curve for a Poisson distribution a n d  the chain curve for a geometric distribution. The 
autocorrelation for a flat distribution with 2, 3 or 4 branches equally likely coincides with 
that of the uniform branching case to within the resolution of the graphs.  ( a )  Linearly 
increasing barriers, ( b )  quadratically increasing barriers ( c )  barriers that  go as no '. 

would then seem that barriers increasing slower than linearly would lead to a solution 
that diverges from that of uniform branching. However, the solutions will diverge only 
to the point of approaching a constant ratio at large n (figure 2(c)).  Note that the 
distribution that yields the greatest difference from uniform branching is the one with 
the longest tail, the geometric distribution. 

In the case of linearly increasing barriers an additional argument may be made for 
the insignificance of randomness in the branching. Many results may be derived from 
simple scaling arguments. A typical example is the result of Ogielski and Stein [ 13 for 
the limiting form of the average ultrametric distance travelled, 

(28) lim r - T  ( d (  t ) )  - (T/A) log t 
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Figure 2. (cont inued)  

in terms of the increase in barrier height, A. The distributions scale in width appropri- 
ately (in proportion to the mean) for the same scaling argument used to understand 
this result to remain valid. 

Turning now to the case of non-degenerate sites, we note first that any initial 
broadening of the distributions due to equation (22)  will become insignificant because 
the width will iterate toward the same fixed point, equation (17). Moreover, application 
of the central limit theorem after sufficiently many levels of branching yields 

which merely shifts the autocorrelation by a constant factor. 
We have solved exactly the problem of diffusion in a randomly branching ultrametric 

space and have presented analytical arguments as well as numerical results indicating 
the qualitative robustness of the problem. Further arguments have been presented to 
extend these conclusions to spaces of non-degenerate sites. 
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